Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

Table 4 Accuracy of the machine learning techniques considered with covariates temperature and humidity at various forecast horizons

From: Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil

Week

SVM

Random Forest

XGBoost

LSTM

Prophet

MAE

MAPE (%)

RMSE

MAE

MAPE (%)

RMSE

MAE

MAPE (%)

RMSE

MAE

MAPE (%)

RMSE

MAE

MAPE (%)

RMSE

1

112.29

29.84

176.15

410.44

119.94

621.41

439.89

151.00

644.90

71.35

22.31

101.53

200.20

46.62

293.64

2

138.34

36.41

215.68

418.29

119.06

628.82

440.81

139.93

646.74

89.50

23.56

130.71

222.88

49.96

326.45

3

165.67

46.73

248.43

416.61

80.38

628.41

431.51

93.65

636.03

114.73

26.24

173.90

247.76

54.57

353.17

4

193.32

57.77

280.87

425.16

79.53

635.42

452.01

92.57

653.74

148.74

32.14

223.35

265.58

57.98

373.31

8

289.62

108.35

405.34

444.25

69.99

652.34

461.87

78.97

660.34

292.91

57.01

416.62

316.96

64.81

444.14

12

360.53

175.58

492.24

463.77

69.96

667.65

465.48

73.89

665.71

410.96

79.92

573.32

342.47

61.86

495.31

Week

SVM-Lag

Random Forest-Lag

XGBoost-Lag

LSTM-Lag

Prophet-Lag

MAE

MAPE (%)

RMSE

MAE

MAPE (%)

RMSE

MAE

MAPE (%)

RMSE

MAE

MAPE (%)

RMSE

MAE

MAPE (%)

RMSE

1

188.99

50.10

310.12

414.14

143.38

603.79

412.62

172.51

610.86

83.58

28.87

117.39

208.55

77.77

299.80

2

205.94

56.69

338.36

422.68

142.14

613.06

433.29

210.35

627.08

102.1

28.27

155.82

235.76

65.11

339.18

3

223.76

63.06

364.19

424.42

117.13

616.01

416.41

145.61

611.33

132.8

30.88

201.65

259.27

58.71

369.47

4

245.03

70.38

391.97

428.85

109.80

621.38

427.03

154.94

612.99

166.45

34.97

251.28

280.24

59.53

394.74

8

303.25

85.87

470.16

439.87

71.77

641.60

431.1

74.68

630.37

304.93

60.16

438.11

347.77

70.88

479.95

12

341.82

121.50

513.45

454.75

68.21

655.17

446.64

71.04

646.80

422.09

82.63

586.77

389.37

74.56

540.32

  1. Bold indicates the method with the best performance for each of the measures